|
| 网站首页 | 资讯中心 | 桑梓文库 | 中国名人 | 锦绣中华 | 同学录 | 教育频道 | 图片中心 | 桑梓下载 | 留言桑梓 | | ||
|
||
|
|||||
公考行测全面复习资料二:数学运算部分 | |||||
作者:佚名 文章来源:人民网 点击数: 更新时间:2008/10/9 | |||||
1.数的拆分: 数的拆分问题是公务员考试常考的题型之一,考察对数的基本特性的掌握,通常此类问题都比较灵活。一般来说此类问题整体难度不大,不过像考试中常用的代入法等在此将不再实用,故掌握方法就变得特别重要。下面我们就和大家分享几种常用的解决此类问题的方法。 1.分解因式型:就是把一个合数分解成若干个质数相乘的形式。运用此方法解题首先要熟练掌握如何分解质因数,还要灵活组合这些质因数来达到解题的目的。 例题1:.三个质数的倒数之和为 ,则a=( ) A.68 B.83 C.95 D.131 解析:将231分解质因数得231=3×7×11,则 + + = ,故a=131。 例题2. 四个连续的自然数的积为3024,它们的和为( ) A.26 B.52 C.30 D.28 解析:分解质因数:3024=2×2×2×2×3×3×3×7=6×7×8×9,所以四个连续的四个自然数的和为6+7+8+9=30。 2.已知某几个数的和,求积的最大值型: 基本原理:a2+b2≧2ab,(a,b都大于0,当且仅当a=b时取得等号) 推论:a+b=K(常数),且a,b都大于0,那么ab≦((a+b)/2)2,当且仅当a=b时取得等号。此结论可以推广到多个数的和为定值的情况。 例题1:3个自然数之和为14,它们的的乘积的最大值为( ) A.42 B.84 C.100 D.120 解析:若使乘积最大,应把14拆分为5+5+4,则积的最大值为5×5×4=100。也就是说,当不能满足拆分的数相等的情况下,就要求拆分的数之间的差异应该尽量的小,这样它们的乘积才能最大,这是做此类问题的指导思想。下面再举一列大家可以自己体会. 例题2:将17拆分成若干个自然数的和,这些自然数的乘积的最大值为( ) A.256 B.486 C.556 D.376 解析:将17拆分为17=3+3+3+3+3+2时,其乘积最大,最大值为 ×2=486。 3. 排列组合型: 运用排列组合知识解决数的分解问题。要求对排列组合有较深刻的理解,才能达到灵活运用的目的 例题1.:有多少种方法可以把100表示为(有顺序的)3个自然数之和?( ) A.4851 B.1000 C.256 D.10000 解析:插板法:100可以想象为100个1相加的形式,现在我们要把这100个1分成3份,那么就相等于在这100个1内部形成的99个空中,任意插入两个板,这样就把它们分成了两个部分。而从99个空任意选出两个空的选法有:C992=99×98/2=4851(种);故选A。 (注:此题没有考虑0已经划入自然数范畴,如果选项中出现把0考虑进去的选项,建议选择考虑0的那个选项。) 例题2. 学校准备了1152块正方形彩板,用它们拼成一个长方形,有多少种不同的拼法? A.1152 B.384 C.28 D.12 解析:本题实际上是想把1152分解成两个数的积。 解法一:1152=1×1152=2×576=3×384=4×288=6×192=8×144=9×128=12×96=16×72=18×64=24×48=32×36,故有12种不同的拼法。 解法二:1152= ,用排列组合方法:我们现在就是要把这7个“2”和两个“3”分成两部分,每种分配方法对应一种拼法。具体地: 1) 当两个“3”不挨着时,有4种分配方法,即:(3,3× )、(3×2,3× )、( ) ( ) 2) 当两个“3”挨着时,有8种分配方法;略。 故共有:8+4=12种, 这里我们只讨论了数的拆分的几种比较常见的类型及其解题思想,但此类问题决不仅仅局限于此,我们会在以后陆续补充完善。 2.平均数问题 这里的平均数是指算术平均数,就是n个数的和被个数n除所得的商,这里的n大于或等于2。 通常把与两个或两个以上数的算术平均数有关的应用题,叫做平均数问题。 平均数应用题的基本数量关系是: 总数量和÷总份数=平均数 平均数×总份数=总数量和 总数量和÷平均数=总份数 解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数。 例1:在前面3场击球游戏中,某人的得分分别为130、143、144。为使4场游戏得分的平均数为145,第四场他应得多少分?( ) 【答案】163分。解析:4场游戏得分平均数为145,则总分为145×4=580,故第四场应的580-130-143-144=163分。 例2:李明家在山上,爷爷家在山下,李明从家出发一每分钟90米的速度走了10分钟到了爷爷家。回来时走了15分钟到家,则李明往返平均速度是多少?( ) A.72米/分 B.80米/分 C.84米/分 D90米/分 【答案】A。解析:李明往返的总路程是90×10×2=1800(米),总时间为10+15=25分钟,则他的平均速度为1800÷25=72米/分。 3. 最大公约数与最小公倍数问题 公约数与公倍数的概念 公约数:几个自然数公有的约数,叫做这几个自然数的公约数。公约数中最大的一个称为这几个自然数的最大公约数。 公倍数:几个自然数公有的倍数,叫做这几个自然数的公倍数。公倍数中最小的一个大于零的公倍数,叫做这几个自然数的公倍数。 最大公约数与最小公倍数问题在日常生活中的应用非常广泛,故而成为公务员考试中比较常见的题型。这类问题一旦真正理解,计算起来相对简单。下面通过例题来加深大家对最大公约数与最小公倍数概念的理解。 例题1: 有两个两位数,这两个两位数的最大公约数与最小公倍数的和是91,最小公倍数是最大公约数的12倍,求这较大的数是多少? A.42 B.38 C.36 D.28 【答案】D。解析:这道例题非常清晰的点明了主旨,就是最大公约数与最小公倍数问题,那么我们可以根据定义来解决。这两个数的最大公约数是91÷(12+1)=7,最小公倍数是7×12=84,故两数应为21和28。 例题2: 三根铁丝,长度分别是120厘米、180厘米、300厘米,现在要把它们截成相等的小段,每段都不能有剩余,那么最少可截成多少段? A.8 B.9 C.10 D.11 【答案】C。解析:这道例题中隐含了最大公约数的关系。“截成相等的小段”,即为求三数的公约数,“最少可截成多少段”,即为求最大公约数。每小段的长度是120、180、300的约数,也是120、180和300的公约数。120、180和300的最大公约数是60,所以每小段的长度最大是60厘米,一共可截成120÷60+180÷60+300÷60=10段。 4.数的整除特性 关于数的整除特性,中公教育的教材上讲的已经很详细了,但是还是不断有学员问相关的题型,看来大家还是不能够完全把握此类规律。我在这里做个表格,方便大家的理解和记忆。 可以被整除的数字 特性 2 偶数 3 每位数字相加的和是3的倍数 4 末两位是4的倍数 5 末位数字是0或者5 6 能同时被2和3整除 7 末三位数字表示的三位数与末三位数字以前的数字所组成的数的差(以大减小)能被7整除 8 末三位是8的倍数 9 每位数字相加的和是9的倍数 10 末位数字是0 11 1,奇数位置上的数字和与偶数位置上的数字和之间的差(以大减小)是能被11整除 2,任何一个三位数连写两次组成的六位数 3,末三位数字表示的三位数与末三位数字以前的数字所组成的数的差(以大减小)能被11整除 12 能同时被3和4整除 13 末三位数字表示的三位数与末三位数字以前的数字所组成的数的差(以大减小)能被13整除 25 末两位数是25的倍数 125 末三位是125的倍数 [1] [2] [3] [4] [5] [6] [7] [8] [9] 下一页 |
|||||
文章录入:光荣与梦想 责任编辑:光荣与梦想 | |||||
【发表评论】【加入收藏】【告诉好友】【打印此文】【关闭窗口】 |
|
|
|
|
最新热点 | 最新推荐 | 相关文章 | ||
2016年国家公务员考试15日起 2015年度中央机关公务员招考 中央机关及其直属机构2015年 中央机关及其直属机构2015年 2014年国家公务员招考7非通用 2014年国家参照公务员法管理 五步教你看懂2014国家公务员 2016年公务员考试专题 2014年国家公务员考试职位表 中央机关及其直属机构2014年 |
网友评论:(只显示最新10条。评论内容只代表网友观点,与本站立场无关!) |
| 设为首页 | 加入收藏 | 联系站长 | 友情链接 | 版权申明 | 网站公告 | | |||
|